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An infinite elastic medium is initially at rest in a prestressed state of plane- or anti-plane strain. At
time ¢ = 0 a plane crack comes into existence which occupies a strip parallel to the y axis and whose
width varies in time.

Assuming that the components of the traction are known on the crack surface it is possible to set up
an integral equation on the area of the crack for the relative displacement across the crack.

Although the kernel of this integral equation is non-integrable a method is found for discretizing it
and a numerical method of solution is carried out.

The results, which in some cases are the solutions of diffraction problems, are presented graphically.

1. DESCRIPTION OF THE PROBLEM
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The problem treated in this paper is one arising in seismology from an attempt to describe
mathematically the mechanism of earthquakes. Fault-plane studies indicate that most earth-
quakes consist of a more or less catastrophic slip of the material on one side of a fault plane
relative to the material on the other side. If the amount of this relative slip is known as a function
of time and position on the fault plane the radiation from such a seismic source may be calculated

t Permanent address: Department of Applied Mathematics and Theoretical Physics, University of Cambridge.
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354 R.BURRIDGE

by integrating a suitable Green function. It is the purpose of this paper to describe an idealized
dynamical model for which such relative motions may be computed.

The problem may be posed at various levels of sophistication. For instance, if we knew the
composition and equation of state of the material at the earthquake focus, its state of stress, and
its temperature we might ask how the material would fail. Assuming that the material suffers
a localized shear failure we would like to know on which surface the failure occurs, how the
failure propagates from some region of nucleation on this surface, and what is the amount of
slippage as a function of time and position on the fault plane. Stated with this degree of generality
the problem is very complex even for homogeneous materials. The next simplest level at which the
problem may be posed is to assume that at least we know the surface across which shearing takes
place. This is not unreasonable physically since earthquakes are often associated with pre-
existing fault planes, planes of weakness where fracture originally occurred in the geologic past.
Moreover, it is not unreasonable on the basis of surface traces of faults to assume a planar form
for these surfaces. The problem may be put into a mathematical setting if we know the cohesive
tractions acting across this plane of weakness as functions (or functionals) of the relative motion
and its history. These functions must be such as to allow instability. For instance if the cohesive
tractions at a point depend only on the relative slip or velocity of slip at that point we must sup-
pose that once the motion starts these tractions drop to values below those in the initial static
state. Possibly this will occur after an initial increase in traction as in Barenblatt’s theory of brittle
fracture. But even the simplest problem of this type, the case of anti-plane strain, has only partially
yielded to analytical techniques (Kostrov 19645) and this only when the region where the
cohesive tractions are non-zero is effectively confined to a line, the crack tip. It was my original
aim to attack such problems numerically for anti-plane and plane strain but in the present paper
I shall be content with an even more idealized situation. I shall assume that not only is the surface
of shear failure known but that it is a plane and that we know in advance what the region ofslip
on this plane is as a function of time. If we also know the cohesive tractions as a function of space
and time on the area of slip we may compute numerically what the relative displacement is across
the fault plane. We shall, moreover, confine attention to two-dimensional problems. Mathematic-
élly this is almost identical to the problem of the diffraction of elastic waves by a crack whose
size may vary in time. So far only self-similar two- and three-dimensional problems of this
type have been solved analytically. (See Broberg (1960), Burridge & Willis (1969), Craggs
(1966), and Kostrov (19644).) Anything more complicated leads to unwieldy expressions and
is best solved numerically. Recently Halliday (1969) has used Kostrov’s analysis (Kostrov 1964 4)
to obtain numerically the stresses beyond the crack tips for the second problem considered in
§6 of this paper. As Kostrov remarks, it is necessary to supplement the analysis with computa-
tional methods in order to carry the solution further than a very limited region.

Previous workers on earthquake mechanisms have usually been content to postulate the rela-
tive displacement across the fault plane as a function of time and space with the result that it is
sometimes doubtful whether these displacements could arise from any dynamical processes
which might govern the focal mechanism. Other workers have simulated the source by means of
given distributions of body forces but this again is subject to the same criticism. (See, for instance,
Ben-Menahem (1961) and Hirasawa & Stauder (1965).)

Although we do not know the stress field at an earthquake focus and although we do not
know what precise form the stress drop may take, at least we shall obtain sources governed by
dynamical processes of a fairly plausible kind.


http://rsta.royalsocietypublishing.org/

s |
y B
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SOLUTION OF CERTAIN INTEGRAL EQUATIONS 355

Archambeau (1968) has recently considered realistic models consisting of a moving zones of
melting in a prestressed solid and has obtained some numerical results relating to radiation from
his sources. His paper should be referred to also for its very full bibliography.

2. THE MATHEMATICAL FORMULATION OF THE PROBLEM

Although the specific numerical solutions obtained later are all for two-dimensional problems,
I'shall here set up the general three-dimensional scheme. Let #, y, z be Cartesian coordinates and
¢ the time. Let two identical isotropic half-spaces occupy the regions z > 0 and z < 0. Initially,
the system is strained under a stress field which is not purely hydrostatic and the whole system
is held in equilibrium by ‘frictional’ tractions acting across the plane z = 0.

ﬁg/
=
ya

yi y
o} ==

s
& —

Ficure 1. This shows the crack region R(t) lying in the plane z = 0. R(t) is a growing region
which can support reduced tangential tractions only.

At time ¢ = 0 a crack comes into existence and thereafter occupies a region R(¢) of the plane
z = 0. The crack is defined by the fact that on R(¢) the shear tractions fall below their initial values
(sec figure 1). We shall suppose this drop in traction is known as a function of time and position
on R(#). Let us denote the initial values of the shear traction with which the material in z > 0 acts
on the material in z < 0 by 72 (%, %), i = %,y and the values of the corresponding components on
R(t) by 7E(¢, x,y). Then we shall regard each of 77 and 7{* as known in advance and hence also their
difference 7, is known: Tty %, 9) = 7%, 9) — 7Rt %, 9). 2.1)

This drop in shear traction allows the possibility of slippage of the material in z > 0 relative
to the adjacent material in z < 0 within the region R(¢). However, outside R() we shall suppose
the material to be welded across the surface z = 0.

The problem before us, then, is to find the amount of slip in R(#) as a function of ¢, x,y. The
initial stress field is supposed to have a compressive component so that there is no opening of the
crack. This implies that there is no normal relative displacement across the crack surface.

Let ug, u,,u, be the x, y, z components of displacement measured relative to the initial equili-
brium state, which is not stress-free. For fixed ¢, «, y it is easy to see that u,, u, are odd functions
of z and #, is an even function of z. This implies that on z = 0 and off R(t), u, = 0 and u, = 0.
Also the drop in the zz-component of stress from its initial value is an odd function of z so that it is
zero everywhere on the plane z = 0, by continuity.

33-2
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356 R.BURRIDGE

With this symmetry in mind we need only consider the half-space z > 0. Let p, A, g be the
density and Lamé constants of the elastic material. Then we need to solve the following problem.
Inz>0 22u
PoE = (A+p)V(V.u)+pVeu,

(2.2)
u=0 for £<0,
where u = (u,,u,,u,).
On z = 0 the z component of the drop in traction is zero;
—AV.u— 2/4% = 0 everywhere. (2.3)
On the region R(t) of z = 0 the x- and y-traction drops are prescribed so that
Ou,  ou,\
— (‘é‘z‘ +‘3;) = 74(4, %,9),
o (2.4)
Y T
ﬂ( P 3y) 7y (%, 9).
Off R(¢t), but still in the plane z = 0,
Uy, =0, u, =0, (2.5)

If7,, 7, and R(¢) are given it is required to find u, and u, on R(¢)

The method of solution is to set up a linear integral equation on the plane z = 0 for u,, u,, «,.
Such a formulation has been used by Banaugh (1962) and by Banaugh & Goldsmith (1963)
for the numerical solution of problems involving the diffraction of harmonic elastic waves by
obstacles of various shapes and also by Friedman & Shaw (1962) for time-dependent acoustic
diffraction problems.

Having found the numerical formulation of this equation we may eliminate #, and so set up
an integral equation for u,, u, alone. However, our method of discretizing the kernel is such that
we must obtain the kernel for the first integral equation before eliminating u,.

I shall now outline the general theoretical scheme for the method and in §4 explain in detail
how the integral equation is discretized for antiplane strain. In §7 the discretization for plane
strain is described.

Denote by R the region of ¢, x, y in which («,y) lies in R(t). Let 7,, 7,, 7, denote the x-, y-, z-
components of the drop in traction on z = 0 and u,, u,, 4, the x, y, z components of displacement
on z = 0. (At this stage we do not require 7, to be zero.) Suppose that u,, u,, u, are known as func-

tions of ¢, x, y then 7,, 7, 7, depend linearly upon u,, «,, u,. Since this linear dependence is trans-

lationally invariant in ¢, ¥, ¥ we may write it as a convolution
T = Kxu, (2.6)

where © = (7,,7,,7,), Kis a 3 x 3 matrix whose elements are distributions in ¢, x, y and * stands

for convolution in ¢, x, 5. Thus (2.6) may be written more explicitly as
Tz’(t3 Xy .7/) = f d¢’ dx’ dy,KijU‘ tla x— x’: Y —?/') U (tla x,) .7/,)) (2'7)
c
where i,j = x,y, z. From consideration of domains of dependence the region C of integration is
defined by (v—2)4 (y—y)? < (=) (1 <1), (2.8)
where a = /([A+2u]/p), the P wave velocity.
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If we now take into account (2.2) to (2.5), (2.7) becomes
TL(t %, y) = f K, -t x—x,y—yu, (¢,x,y") dt’ dx’dy’
CAR

+ K, (t—t,x—x,y—y')u, (,x',y") dt’ dx’dy’

CnR

+f0 K, (t—t,x—x y—y)u, (t',x"y")dt'dx’ dy; (2.9)
a similar equation with 7, K, K, K, replaced by 7, K, K,,,,, K,.;
and 0= fo R K -t x—x',y—y)u, (',«',y")dt’ dx’ dy’

+ K, (t—t,x—x"y—y)u, (t,x,y)dt dx’ dy’
CAR

+j K, (t—t,x—x"y—y)u,(t',x',y")dt’dx’ dy'. . (2.10)
c

The reason for the difference between the domain of integration in the third integrals in (2.9)
and (2.10) is that whereas u, = 0, u, = 0 outside R, u, is not necessarily zero there.

The equations (2.9) and (2.10) are sufficient to determine u,, u, on R and u, everywhere on
z = 0 provided that we can find discretizations of the kernels K.

It turns out that not only are the analytic expressions for K extremely unwieldy but they are
regularizations of non-integrable functions. Thus at first sight it is not clear how to approximate
them numerically. However, the method of discretization discussed in §4 below does not require
that the analytic forms of K;; should be known, nor does the non-integrability impair the method.

Let us rewrite (2.7) in the form

Ty = Kppxu,+ Ky xu, + K, *u, (2.11)
7, =K xu,+ K, «u,+K, +u, (2.12)
0=K, %u, +K, %u,+ K, *u, (2.13)

If we now let K;'(¢, x,y) be the kernel inverse to K, (¢, x,y), that is
K 'x7=w whenever 7 =K, *uw, (2.14)

we may solve (2.13) for u, and so eliminate %, from (2.11) and (2.12).
The resulting equations are

Ty = (Kwa: - Kz_zl * Ka:z * sz) * Uy + (Kwy - K;zl * K:vz * Kzﬂ) * Uy, (2‘ 15)
Ty = (K= K3 % K, % K,,) % u,+ (K, — K;'« K, «K,,) xu,. (2.16)

The advantage of this form over (2.11) to (2.13) is not only that u, need not be determined but
that u,, u, are zero outside R and so the convolution integrals may be limited to integrals over
R with a great saving of computer time (see §10).

In what follows only two-dimensional forms of the problem are solved in which all functions
are independent of ¥ and only one of «,, u, are non-zero. In principle a similar method would
apply almost as easily to three-dimensional problems but the computer time and space required
would be much greater.
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358 R.BURRIDGE

3. THE INTEGRAL EQUATION FOR ANTI-PLANE STRAIN

In order to simplify the cxpressions lct us choose units of length and time so that the shear
wave speed f = /(¢/p) is unity and the unit of mass so that the density of the material is unity.
Suppose that R(¢) is a strip parallcl to the axis of ¥ and that u, depending only on ¢, x, z is the
only non-zero component of displacecment.
The cquation to be satisficd by #,, in the half space z > 0 is
*u, 0w, O%u,

o = (3.1

On z = 0in R the stress drop is prescribed:

0
iauz’_’ =7, in R, (3.2)
where 7, is given. On z = 0 but outside R
u,= 0. (3.3)
The problem is to find «, on R.
It is customary in such problems to solve first for 7, = —du, /0z outside R. Having found 7,

outside R, 7, is then known everywhere on z = 0 so that #, may be written down on R in the form

1 7, (¢, %")
- o y \” L ’ Jat 3.4

lly(t,X) ,n.fc {(t_t/)g_(x_x/)g}.%dt dxy (3 )
where C is now dcfined by

(x—x")2 < (t—=t)2 (¢ <t). (Scc Kostrov 19645.)

t,/

X

Ficure 2. This depicts the region of intcgration RN C hatched in the (¢, x)-plane. RN C is the intersection of
the crack rcgion R with the backward characteristic quarterplane C whose apex is at the point (¢4, x).

In view of the fact that we wish to apply a numerical procedurc it would be convenicent if we
could limit attention to the region R without having to calculate 7, outside R.
But we can invert (3.4) to get

1 u, (', x")
hx) == A2 d¢' dx’, 3.5
b =5 f rmc (=)~ (r—ayzp (3.5)


http://rsta.royalsocietypublishing.org/

\

A

/&

Ly 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

y A
/A \

Y & |
s \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SOLUTION OF CERTAIN INTEGRAL EQUATIONS 359

where the function 1/m{(¢—#')2 — (x — »") 2} must be considered as a regularization and corresponds
to K, of §2 (see figure 2). Since u, = 0 outside R we have limited the domain of integration to
R.

We shall now describe how this non-integrable kernel may be discretized.

4, THE DISCRETIZATION OF THE KERNEL

We may write :
ou, |

__gzll Iz~0 = Ky:z/ * (uylz:0)> (4.1)

where u, satisfies (3.1) with zero initial conditions. But — du, [0z also satisfies (3.1) with zero initial

conditions so that

Pu o ow) . [ ou, ) _
55'2* o = ——*az ( '—-—a_z\) - = Kyy ES ( _6; - = Kyy % Kyy % uy‘zzo. (4:.2)
. : 2 0?
Hence from (3.1) we obtain K, =K, *u, = (6—155 ——a—xz) Uy, (4.3)
or, K, « K, xu, = {8"(t) 8(x) —&(t) 0" (x)} % u,, (4.4)

where § and 8" are the Dirac ¢ and its second derivative. Since (4.4) is true for arbitrary u,(t, x) we
must find K, such that K,y + K,y = 8"(t) 5(x) =8(1) 8" (x), (4.5)

where we have written u,(t, x) for u,(¢,x, +0). But §"(¢) 8(x) — () 8" (x) is easily discretized by
using the usual simple difference schemes for second derivatives.

TaBLE 1. THE DISCRETIZATION OF 6" () 0(x)

NS -1 0 1
N
0 0 1/k2 0
1 0 —2/R? 0
2 0 1/k2 0

TABLE 2. THE DISCRETIZATION OF d(f) 6"(x)

U ‘ —1 0 1
0 0 0 0
1 1/h2 — 2/ 1k
2 0 0 0

Let us now consider a square grid of points in the plane with grid lines parallel to the ¢ and
axes with grid spacing A¢ = Ax = 4 so that a point (7,7) (z,j integers) corresponds to the values
t = th, x = jh. With this grid we discretize 8" (¢) §(x) — () 6”(x) by discretizing 6" (¢) 6(x) as the
array shown in table 1, and 8 (¢) 6" (x) as the array shown in table 2. All other components of these
‘arrays are taken to be zero. ' ‘
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Let us write the discretization of K, in the form (1/£) K then (4.5) leads to

P> K(to~1,jo—7) K(5.5) = H (igsjo), (4.6)
where H (i, j,) is the array whose only non-zero elements are
H(0,0) = H(2,0) =1, H(1,1) =H(1,-1) = —1. (4.7)
Because of consideration of influence domains K(z, ) is restricted to be zero except for 0 < |/l < ¢
\]/ﬂ‘ Under these restrictions, by setting ¢, = 0, j, = 0 in (4.6), we obtain
o K2(0,0) = H(0,0) = 1. (4.8)
§ > Hence K (0,0) = + 1. Actually we shall take
2 = K(0,0) = 1. | (4.9)
25 5 This point will be considered again later. Now set ¢, = 1, j, = 1in (4.6) to get
Eg K(0,0)K(1,1) +K(1,1)K(0,0) = —1,
22 which implies K(1,1) = —o0.5. (4.10)
%IC:J Similarly, K@, —1) = —0.5. (4.11)
%g o Having found K (3,§) for ¢ < i, we may obtain K (7g5Jo) from
gg 2K (0, 0) K (29, Jo) = H (24, J0) —jg;]?(io—i,jo—j)f(i,j). (4.12)

This simple recursive scheme gives the required discretization of the kernel. It turns out that
K(i,j) takes on non-zero values only when 7 4 is even and | j| < ¢. The numerical values for small
i,j are given in table 3.

TaBLE 3. THE ARRAY K(7, )
\J —5 —4 -3 -2 -1 0 1 2 3 4 5

i

0 0.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  0.000000
1 0.000000  0-000000  0.000000  0.000000 —0.500000  0.000000 —0.500000  0.000000  0.000000  0.000000  0.000000
2 0.000000  0.000000  0.000000 —0.125000  0.000000  0.250000  0.000000 —0.125000  0.000000  0.000000  0.000000
3 0.000000  0.000000 —0.062500  0.000000  0.062500  0.000000  0.062500  0.000000 —0.062500  0.000000  0.000000
4 0.000000 —0.039063  0.000000  0.031250  0.000000  0.015625  0.000000  0.031250  0.000000 —0.039063  0.000000
5 —0.027344  0.000000  0.019531  0.000000  0.007813  0.000000  0.007813  0.000000  0.019531  0.000000 —0.027344

/
I \
A A

—
<
> E 5. THE NUMERICAL SOLUTION OF THE INTEGRAL EQUATION
8 ﬁ The numerical method described here is the straightforward solution of (3.5), replacing inte-
2SN @) grals by sums in the simplest way.
E o Let us replace 7,(f, %) and u,(¢, x) by 7,(i,7) and u,(3,j) where
W

7,(6) = 7,(ki, ) and  wu,(i,5) = u;(ih,jh). (5.1)
Thus as in the thermodynamics literature we use the same name for the same physical quantity
irrespectively of what the functional arguments are.
Then (8.5) takes the form

T Giodo) = Uk 55 Kio=ijo—j) (). (5.2)
(hi, hj)eR
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SOLUTION OF CERTAIN INTEGRAL EQUATIONS 361
Hence K(O, O) uy(io,jo) = }”y(i(),jo) “%OZK(Z’]) uy(io_i’jo _j)' (5'3)

At this point it is possible to determine which sign K (0, 0) must have. We consider the values of
u,(t9,Jo) when 7, and u,, are zero for ¢ < ¢y but 7,(zy,j,) = 1, say. Itis easy to see that (5.3) reduces

to - .o
K(0,0) uy(ZO,JO) =h (5.4)
and that, since u, (%, j,) must have the same sign as 7,
K(0,0) =1, (5.5)

Thus if u,(z,7) is known for 7 < iy and (i, ) € R, u(%,,j,) may be computed.
Itisinteresting to notice the analogy between this scheme and the integration of a system of first
order ordinary differential equations. Notice the step-size enters linearly as it would for a first-
order system of differential equations. This is not surprising since we could write equation (4.3)
in the form 2 o2\}
K, *= (ﬁ _W> s

which is homogeneous of order 1 in the derivatives.

Thus the operation of convolution with K, is the square root of a partial differential operator.
In fact the situation is akin to that found in the context of ordinary derivatives of fractional order
4 which may be discretized analogously.

When we come to study the corresponding theory for plane strain we shall meet more compli-
cated algebraic functions of partial differential operators which are homogeneous of order 1.
The particular ones we shall meet are solutions of quadratic equations whose coefficients are

(5.6)

partial differential operators.
Friedlander (1946) considered a very similar situation from an analytical point of view. See
particularly his equations (1.6) to (1.9).

6. COMPARISON OF NUMERICAL RESULTS WITH SOME
THEORETICAL CALCULATIONS

Since the numerical scheme described in §5 is of a somewhat unusual nature it is desirable to
compare the numerical results obtained from its use with analytic calculations where possible.

By a slight extension of Kostrov’s method (Kostrov 1964 5) it is possible to solve (3.5) analytic-
ally at least for a limited range of values of 7.

It turns out that u,(t, x) depends only on values of 7, (¢, x") for (#,x") inside the rectangle I
and the quarterplane IT as shown in figure 3. The lines bordering I are the characteristics through
(t,x) and their reflexions in the boundaries of the region R. These lines are continued to
enclose the quarterplane II, part of which lies outside R.

The formula giving #, (%, x) is

1 7y (', %) 'y’ lf 7y (', %) ' g
LX) = — LA d#'dx’ —— yi di’ d«'. 6.1
uy( x) "TJ; {(t_tl)g__(x__xl)z}% T )11 {(t—t')z—(x-—x')z}‘% ( )
(See Fox (1949) for an alternative approach to a similar problem. )
If the disturbance does not start until ¢ = 0 then there will be a range of values of (¢, x) for which
non-zero values of 7, in I and II occur only within R as for instance when (¢, %) is in A, B, G,
or D of figure 4 (see below). In such regions the disturbance may be computed very simply.

34 Vol. 265. A.


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

362 R.BURRIDGE

Let us solve the following problem. The elastic material is in a uniform state of shear with unit
tractions acting across z = 0 in the y direction. At ¢ = 0 the infinite strip z =0, -1 <x < 1
becomes lubricated so that it cannot support any shear tractions. Thus the stress drop

7,=1 on z=0, —-l<x<l, £z0.

It is easier to solve for du,[0f than to use (6.1) directly for u,,.

L
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SOCIETY

PHILOSOPHICAL
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Ficure 3. The hatched areas are the rectangle I and the quarterplane 11 which form the
region of integration in formula (6.1).

.
<l (t)
e D
S =
@) =
= c B
= Q) N
O
= w A
il x

Ficure 4. The region R corresponding to the solutions in figures 5 to 8 is the infinite strip ¢> 0, —1 < x < 1.
Regions A, B, C, D are defined by the heavy lines. The shaded regions I and II are shown for (¢ x) in D
and illustrate the fact that for ¢ > 0 and (¢, ) in A, B, C, D, I and II lie within R.
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Thus ifin (6.1) we replace u, and 7, by their time derivatives we obtain

ou, 1 J‘ o(¢) de’ dx’ 1 J‘ o(¢) de dx’
Y (¢ — = 6.2
o 0 T | ey T e (=)= (e )
for (¢,x) in A, B, C, D of figure 4. It is convenient first to evaluate
z+b dx’
- 6.3
fx—a {Ifz— (x—x’)z}%’ (6:3)
C.. . (b . a
which is sin—1 y —sin~! 7] (6.4)
. ou, L dx’ _
For (¢, x)in A mn (t,x) = _T;fx—t P (x :x’)z}% =1 (6.5)
. ou, b (22 N
For (¢,x) in B i (t,x) = —sin ( ; l) +13. (6.6)
For (4,x) in C Ay 4wy = Lgina (2 T2 1) +1 (6.7)
ot i1
. ou, e i (2—2x . _1<g+2x__1)}
For (¢,x) in D e (t,x) = Tr{sm ( ; 1) +sin - . (6.8)
ou
Thus forx = 0 5;121 (0<t<1)
2 sin-1(2 1 1 3 6.9
= _sin (;—) (1 <t<3). (6.9)

"The function ou, [0t given in (6.5) to (6.8) is plotted in figure 5. The solution for du, /¢ by the
numerical scheme of § 5 for the same problem is shown in figure 6.

The numerical solution for u, itself is shown in figure 7. Here we can compare the numerical
solution for ¢ = 10 with the static solution, which is

u, = (1—x2), (6.10)

This is done in figure 9 where the continuous line consists of straight line segments joining the
values of the numerical solution for ¢ = 10 at grid points in x. The broken line is the function
(1—x2)% also plotted as straight line segments joining the points for values of x at grid points.

Figure 8 is another plot of du, /ot with the time scale halved and the vertical scale doubled as
compared with figure 6. The overall shape is clearly visible for 3 < ¢ < 10, whereas some detail
for small £ is obscured. Notable is the second diffracted wave striking the edge x = 1 at ¢ = 4.
This is scarcely visible in figure 6.

It should be noted that in figures 5 to 9 the grid points in x are mid-points of the twenty inter-
vals 7% unit long in which the interval —1 < x < 1 may be divided. The error at x = + 0.05 is
2.6 %, This error is less than the percentage uncertainty in the crack width in terms of the
discretization step size.

It is interesting, though probably not significant, that if we take the edge of the crack to lie not
a half-step beyond the last x value but three-quarters the numerical solution for ¢ = 10 lies almost
exactly on {(1.025)2 — 2}, the exact analytic solution for a static crack of width 1.025.
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10. By this time the solution has settled down to static values.

Ficure 7. This shows the numerical solution for , itself taken as far as ¢
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Ficure 9. Here the numerical solution #, of figure 7 at ¢ = 10 is plotted as a function of . The true analytic
solution is plotted at the grid points. These values are joined by broken straight line segments.
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O =~ Ficure 10. The region R hatched corresponding to the solution (6.11) to (6.14). The crack

e = nucleates at x = xg, ¢ = 0 and spreads with speed 1 until it fills —1 < x < 1.
e

= O

E ®) The region R of our next example is shown hatched in figure 10. The crack now expands from
%0}

a point ¥ = ¥, at £ = 0 with unit speed in both directions until it occupies the region —1 < x < 1.
This also may be solved analytically quite simply by using (6.1) at least for a limited region
of (¢, x).
Let us change variables of integration in (6.1) to § = t—x and % = ¢+ x. Then (6.1) becomes
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| V5 de o dy
F , A u, (&9
rme =], E—&0 )., —n)h
= (1/2m) x 2(&+x0) 2(n —xy)?
= (2/1) {2 — (x — x,) 2} (6.11)
For (£,7)eB u, (&) = (2/m) (& —77+2)1(77—xo)%
= (24/2/m) (1 —x)} (¢ 4+x—x,)2. (6.12)
For (¢,9)eC uy(&,m) = (242/m) (1 +x)F (¢ —x+x,). (6.13)

For (§,9)eD
uy (&) = (22/m) {(t—x+x0)} (1+2)F + (t+ 2 —x0)F (L—x)3} — (2/m) {2 — (5 —20) %}, (6.14)

This solution is plotted as far as region D in figure 11 for the case when x, = 0.

The same problem solved numerically is plotted in figure 12. In the numerical work the moving
boundary of the crack is specified merely by restricting the region of integration (summation)
to lie within the crack area hatched in figure 10, or, what comes to the same thing, by setting
u, = 0 outside R.

It should be noted that in figure 11 the function plotted is arbitrarily defined to be zero for
¢t > 4 —|x|, that is beyond the region D.

Good agreement is obtained between the numerical and the analytic solution although the
numerical solution shows some roughness mainly owing to the decoupling of the values at grid
points where ¢ +j is even from those where ¢+ is odd. Coupling is achieved after the disturbance
reaches x = + 1.

7. THE DISCRETIZATION OF THE KERNEL FOR PLANE STRAIN

As in §§3 and 4 we shall set up a numerical scheme for a two-dimensional problem which is a
special case of the one described in §2. It may be specified as follows:

Let p, A, # be the density and Lamé constants of the elastic material. We shall suppose that
u,, the y component of displacement, is zero and all other quantities depend upon ¢, x, z only but
not upon y. The region R of z = 0 on which the stress drops are prescribed is again a strip parallel
to they axis.

The equations to be satisfied in the half-space z > 0 are

o%u 2u, 0%, %u,  Puy\
ot = ) (i + ege) (G ) = 0
0%, Puy, (’)Zuz) (82u,g 32uz) _

Poe (A+p) (8x8z+ o2) M\ar To2) T

Let us now choose units of mass and time so that p = 1 and A+ 2x = 1. The unit of length will
be chosen to be of the order of half the crack length. Equations (7.1) now simplify to

(6 )G pa-o-ol Jamlo D =() o2

The boundary conditions on z = 0 are given in terms of the stress drops 7, and 7,, and u,: 7,

(7.1)

is given on R,

u,=0 on z=0 outside R,} (7.3)

7, =0 on the whole of z = 0.

35 Vol. 265. A,
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Ou, Ou,
But Tm——,tl:(”a;'l‘*é;),
ou, ou, ou,
Tzf—/\(~6;+52)—2ﬂaz.

Thus in our non-dimensionalized units

_ ou,, auz)
T”“‘”'“(az tox)

ou, Ou,
Ty = —(1_2:“) %n——@;’

o () =07 Dar (92 (G- o

K,,, K., and K, of § 2, but as an intermediate step

(7.4)

Our first task, then, is to find the kernels X,
let us find the kernels D,; such that

Dee Do) (1) 2 (%
(o 5+ (ar) =2 () -0
on z = 0. The operation — 9/0z commutes with the wave operator in (7.2) so that on z = 0

0% (u, ou

Thus since u,, 4, are arbitrary we may derive from (7.2) a quadratic equation for D:

((1) (1)) 8" (t) 8(x) — ((1) 2) 8(2) 8" (x) + (1 — ) ((1) (1)) D #8(t) &' (x) — (g’ (1)) DD =0,

(7.8)

which is the analogue of (4.5). Once the é functions have been replaced by suitable discretiza-
tions D is computed numerically by a method which closely parallels that of section 4 ((4.6)
et seq.).

Again we choose the time step equal to the space step (call it /) and then discretize 8" (¢) 6 (x)
and &(#) 8" (x) as before, and 0(¢) ¢”(x) as in table 4. Consideration of domains of dependence leads
us to the fact that each component D,,, D, D,,, D,, of D is a triangular array, zero except for
il <.

TABLE 4. THE DISCRETIZATION OF 0(¢) 6'(x)

j\ -1 0 1

i

0 0 0 0

1 1/2k 0 —1/2h
2 | 0 0 0

If D(z,7) is known in all components up to ¢ = 7, — 1, then if we write (7.8) for j = j,, i = ¢,
the only terms involving D (4, j,) arise in D * D and are transferred to the other side of the equa-
tion. When this is done we have an equation for the D,,(iy,j,) in terms of the D, (i,j) with
¢ <iy(p,q = %,2). Thus D may be computed recursively.
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Let us write D (i,j) = 1/kD(4,7). Then for 4 = 1 (Poisson solid) the first few values of D are
as in tables 5 to 8.
Having computed D we may rewrite (7.5) as

() == (2 ) 20w (§ )2} (). 9
Thus (f;:: f;() _ (sz_ (1’11)2;”3 N (D~ g:) 8'<x>>), (7.10)

where 8(z) 8 (x) is discretized as in table 4 and D = 1/4D with D given in tables 5 to 8.

S

i For s = 1 the first few values of K are as in tables 9 to 12, where K = (1/h) K.

OH

ez E TaBLE 5. THE ARRAY D, (1, §)

AN -5 —4 -3 —2 -1 0 1 2 3 4 5

O i\

v 0.000000  0.000000  0.000000  0.000000  0.000000  1.732051  0.000000  0.000000  0.000000  0.000000  0.000000
1 0.000000  0.000000  0.000000  0.000000 —0.866025  0.000000 —0.866025  0.000000  0.000000  0.000000  0.000000
2 0.000000  0.000000  0.000000 —0.177831  0.000000  0.355662  0.000000 —0.177831  0.000000  0.000000  0.000000
3 0.000000  0.000000 —0.098353  0.018875  0.098353 —0.037750  0.098353  0.018875 —0.098353  0-000000  0.000000
4 0.000000 —0.064443  0.015112  0.049716 —0.015112  0.029453 —0.015112  0.049716  0.015112 —0.064443  0.000000
5 | —0.046538  0.010254  0.037978 —0.015578  0-008559  0.010649  0-008559 —0.015578  0.037978  0.010254 —0.046538
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TABLE 6. THE ARRAY D,,(3, /)

NJ —5 —4 -3 -2 -1 0 1 2 3 4 5

AN

0 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
1 0.000000  0.000000  0.000000  0.000000  0.366025  0.000000 —0.366025  0.000000  0.000000  0.000000  0.000000
2 0.000000  0.000000  0.000000  0.077350 —0.154701 0.000000  0.154701 —0.077350  0.000000  0.000000  0.000000
3 0.000000  0.000000  0.055021 —0.065384 —0.034295  0.000000  0.034295  0.065384 —0.055021  0.000000  0.000000
4 0.000000  0.041287 —0.027635 —0.070276  0.058310  0.000000 —0.058310  0.070276  0.027635 —0.041287  0.000000
5 0.032329 —0.010912 —0.063223  0.024836  0.022001 0.000000 —0.022001 —0.024836  0.063223  0.010912 —0.032329

TaBLE 7. THE ARRAY D, (7, )
-5 —4 -3 -2 -1 0 1 2 3 4 5

0 | 0.000000 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
— 1 | 0.000000 0.000000 0.000000 0.000000 0.211325  0.000000 —0.211325  0.000000  0.000000  0.000000  0.000000
< 2 | 0.000000 0.000000 0.000000 —0.025783  0.051567  0.000000 —0.051567  0.025783  0.000000  0.000000  0.000000
S~ >~ 3 | 0000000 0000000 —0.018340  0.021795 0.011432  0.000000 —0.011432 —0.021795  0.018340  0.000000  0.000000
OF 4 | 0000000 —0.013762 0.009212 0.023425 —0.019437 ~ 0.000000  0.019437 —0.023425 —0.009212  0.013762  0.000000
S HH 5 | -0010776 0003637 0021074 —0.008279 —0.007334  0.000000 0.007334 0008279 —0.021074 —0.003637  0.010776

)
= O
E 8 TaBLE 8. THE ARRAY D, (3, §)

o N\UJ -5 —4 -3 -2 -1 0 1 2 3 4 5
32

=9 0 | 0000000 0000000 0.000000 0.000000 0.000000 1000000 0.00000 0.000000 0.000000  0.000000  0.000000
&5, 1 | 0000000 0.000000 0000000 0.000000 —0.166667 —0.666667 —0.166667  0.000000  0.000000  0.000000  0.000000
OZ35 2 | 0000000 0000000 0000000 0008440 —0.111111 ~ 0.205342 —0.111111  0.008440  0.000000  0.000000  0.000000
@£ 3 | 0000000 0000000 0010844 —0.031766 —0.047881  0.137607 —0.047881 —0.031766  0.010844  0.000000  0.000000
=Z 4 | 0000000 0009482 —0.009093 —0.042165 0.021439  0.040675 0.021439 —0.042165 —0.009093  0.009482  0.000000
T 5 | 0007945 —0.001616 —0.027986 —0.009714  0.040617 —0.018492  0.040617 —0.009714 —0.027986 —0.001616  0.007945
=
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TaBLE 9. THE ARRAY K, (1, )
Vi -5 —4 -3 -2 -1 0 1 2 3 4 5

0 0.000000  0.000000  0.000000  0.000000  0.000000  0.577350  0.000000  0-000000  0.000000  0.000000  0.000000
1 0.000000  0.000000  0.000000  0.000000 —0.288675  0.000000 —0.2886756  0.000000  0.000000  0.000000  0.000000
2 0.000000  0.000000  0.000000 —0.059277  0.000000  0.118554  0.000000 —0.059227  0.000000  0.000000  0.000000
3 0.000000  0.000000 —0.032784  0.006292  0.032784 —0.012583  0.032784  0.006292 —0.032784  0.000000  0.000000
4 0.000000 —0.021481  0.005037  0.016572 —0.005037  0.009818 —0.005037  0.0165672  0.005037 —0.021481  0.000000
5 —0.015513  0.003418  0.012659 —0.005193  0.002853  0.003550  0.002853 —0.0056193  0.012659  0.003418 —0.015513

é TaBLE 10. THE ArRrRAY K, (7, j)

— \oJ -5 —4 -3 -2 -1 0 1 2 3 4 5

O _i

2™ 0 | 0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000  0.00000 0.000000  0.000000  0.000000

mQ L 0.000000  0.000000  0.000000  0.000000 —0.044658  0.000000  0.044658  0.000000  0.000000  0.000000  0.000000

T 2 | 0.000000 0.000000 0.000000  0.025783 —0.051567  0.000000  0.051567 —0.025783  0.000000  0.000000  0.000000
O 3 | 0000000 0000000 0018340 —0.021795 —0.011432  0.000000 0.011432  0.021795 —0.018340  0.000000  0.000000

F=v 4 | 0000000 0013762 —0.009212 —0.023425 0.019437  0.000000 —0.019437  0.023425  0.009212 —0.013762  0.000000

5 | 0.010776 —0.003637 —0.021074  0.008279  0.007334  0.000000 —0.007334 —0.008279  0.021074  0.003637 —0.010776

TasLE 11. THE ARRAY K, (1, /)

PHILOSOPHICAL
TRANSACTIONS
OF

NoJ -5 —4 -3 -2 -1 0 1 2 3 4 5

i

0 0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
1 0.000000  0.000000  0.000000  0.000000  0.044658  0.000000 —0.044658  0.000000  0.000000  0.000000  0.000000
2 0.000000  0.000000  0.000000 —0.025783  0.051567  0.000000 —0.051567  0.025783  0.000000  0.000000  0.000000
3 0.000000  0.000000 —0.018340  0.021795  0.011432 0.000000 —0.011432 —0.021795  0.018340  0.000000  0.000000
4 0.000000 —0.013762  0.009212  0.023426 —0.019437  0.000000  0.019437 —0.023425 —0.009212  0.013762  0.000000
5 —0.010776  0.003637  0.021074 —0.008279 —0.007334  0.000000  0.007334  0.008279 —0.021074 —0.003637  0.010776

TaBLE 12, THE ARRAY K, (i, })

\Jj -5 —4 -3 —2 -1 0 1 2 3 4 5
>
0 0.000000  0.000000  0.000000  0.000000  0.000000 1.000000  0.000000  0.000000  0.000000  0.000000  0.000000
1 0.000000  0.000000  0.000000  0.000000 —0.166667 —0.666667 —0.166667  0.000000  0.000000  0.000000  0.000000
2 0.000000  0.000000  0.000000  0.008440 —0.111111 0.205342 —0.111111  0.008440  0.000000  0.000000  0.000000
3 0.000000  0.000000  0.010844 —0.031766 —0.047881  0.137607 —0.047881 —0.031766  0.010844  0.000000  0.000000
4 0.000000  0.009482 —0.009093 —0.0421656  0.021439  0.040675  0.021439 —0.042165 —0.009093  0.009482  0.000000
—J] 5 0.007945 —0.001616 —0.027986 —0.009714  0.040617 —0.018492 0.040617 —0.009714 —0.027986 —0.001616  0.007945
olm
=z = 8. SOME NUMERICAL RESULTS FOR PLANE STRAIN
) . . . . .
O It is now straightforward to set up equations (2.9) and (2.10) for plane strain. The equations
O become
=w
7., %) = f Ko (=t 5—x) u (¢, ') dt’ dx’ + f K (t—t,a— ), ) de dv,  (8.1)
CnR C
0= | Kalt—t,x—)u,(t,x)drdy + f Kult=tyx=x)uft,)drdy. (2)
.

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

PHILOSOPHICAL
TRANSACTIONS

)\
A

|

AL

SOCIETY

Y B \

—
NI
olm
~ =
kO
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org

SOLUTION OF CERTAIN INTEGRAL EQUATIONS 373

The numerical method is a direct extension of (5.2), (5.3):
Kaa(0,0) e 15 o) = (105 Jo) = 2 Xikog (t9= 15 o =J) (15 )
= 2 2 Kallo =i jo—) (6 j),  (8:3)
Bo(0,0) (i o) = = 3 ERualio— i, Jo ) i) — S B o=, Jo—i) (i ). (8.4
In the first sums in (8.3) and (8.4) the summation is restricted to the region R of the crack since
u,(1,7) = 0 outside R. However, the summations in the second sums are not so restricted. The
normal displacement u,, which represents the warping of the fault plane, is non-zero even out-
side R. Thus in (8.4) we consider values of (7, j,) outside R also. The figures which follow represent
some solutions for constant stress drop 7, and different forms for the region R.

Figures 13 and 14 show the numerical solutions when 7, = 1 and R(?) instantaneously attains
its maximum size at ¢ = 0 and thereafter occupies the same region — 1 < x < 1 for all time. The
solution was carried out with eight discretization steps across the crack and forty in the time direc-
tion. Notice that the solution overshoots the static solution, #, attaining a maximum of 2.738 (for
x = +0.125) atabout ¢ = 3 after which it decreases and has essentially reached the static solution
by ¢ = 9 or 10.

After attaining its maximum the tangential displacement #, does not oscillate but decreases
monotonically to its static value (2.333 at x = + 0.125). In this respect the motion contrasts with
that for antiplane strain where the solution continues to oscillate with heavily damped oscillations.

The normal displacement u, is shown in figure 14. We see clearly a rather smooth S-wave pro-
pagating in the + x directions, especially for ¢ > 5.

Here u, attains its maximum of 0.884 at x = 0.875 and like «, it then decreases monotonically
to a static value by about # = 9 in the region of the crack, thatis for —1.5 < x < 1.5, say. Away
from the crack we cannot expect the static solution to be attained at all points since the waves
produced by the crack are still travelling. They are still evident in the diagram when the solution
is terminated at ¢ = 10.

Thevalues of u, and 4, at = 10 may be compared with the values obtained for the correspond-
ing static problem by Starr (1928). His formula (16), after the addition of a rigid rotation

— 3
Uy = — 32, Uy =X

to bring the displacement to zero at infinity, giveson z = 0

U, = 2(1—a%% for —1l<x<l,
=0 for |x|>1;

u,=3(x+@x2-13%) for x< —1, (8.5)
=3x for —1l<ux<l,
=3(x—(x2—1)%) for 1<ux.

Figure 15 shows these functions plotted together with our numerical solutions for ¢ = 10. Agree-
ment is obtained to within 4 %, at the centre of the crack which is less than the uncertainty in
the position of the boundary owing to the coarseness of the discretion.

Figures 16 and 17 show the tangential and normal displacements due to a crack which is
nucleated at the origin at ¢ = 0 and then spreads out at half the P-wave speed (that is 0.5 in
our non-dimensional units) in both directions until it occupies the region —1 < x < 1 after
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which it spreads no further. The ripples on the solution are due to the discretization of the moving
edges of the crack and these rapidly die out when the crack stops spreading. Notice that the
tangential displacement continues to increase even after the crack has reached its maximum
size and overshoots its static value like the %, shown in figure 11. If we were to consider this solu-
tion as a model of a seismic source it is most likely that the slipping would cease when #, attained
its maximum value since friction would then oppose the tendency for #, to return to its static
value.

Ux

T T x
-15 1.5
Uz
14
\\\
T T T T T x
~-15~\ —=10 —0.5 0 0.5 1.0 15
=~
—14

Ficure 15. Here we may compare the values of #, and u, obtained numerically for ¢ = 10
(full lines) with the analytic solution of the corresponding static problem (broken lines).

In figures 18 and 19 are shown the solutions %, and «, with more resolution when 7,(¢, x) = &(¢)
onthecrack —1 < x < 1. In 18 the two P waves diffracted from the edges are very clear. Smooth
diffracted § waves are also evident. In figure 19 the corresponding diffracted 2 is smooth but the
S is rather more distinct. These differences in the appearances of the diffracted P and § waves
crossing the crack in figures 18 and 19 are due mainly to the differences in polarization of the two
types of waves.

Notice also in figure 19 the § wave propagating beyond the edges of the crack. The P propa-
gating in this region is not evident in agreement with its direction of polarization.
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9. ELIMINATION OF THE NORMAL DISPLACEMENT

Since the values of the displacement discontinuity across z = 0 determine the displacements
everywhere (see, for instance, Burridge & Knopoff 1964) the determination of %, is redundant in
so far as we wish eventually to calculate the radiation out of the plane of the crack. We now show
more explicitly how », may be eliminated following the scheme of (2.11) to (2.16).

K;'+K,, «K,, is then found as the solution M of

Wesolve (8.2) for u,: u, = — K % K, %u,, (9.1)

e where K;! is defined by K, «Kz' = 8(t) 8(x). (9.2)
i N Substituting this value of u, in (8.1) we obtain

o
S = (Koo — K« Koo Ky) v uy =7, (9.3)

23]
= Thus we need to compute the new kernel
= O
I O L= Kxx - Kz_zl * sz * sz' (9’4)
=uw
22 Or, if we write L = L/h, we may compute L = K, —K;;' K, « K,,. We first compute K, *K,,.
Bg In discretized form this becomes
I —
- - .o oo e e e e s
82 8 (sz*sz) (103]0) = ZijEsz(ZO—Za ]0—]) sz(29 ]) (9-5)
oZ ’
=
T
o=

Kzz * M= sz *sz' (9'6)
M may be computed recursively.
Assume that M (z,5) is known for ¢ < 7, then

M(ZO) ]0) = (sz *sz) (ZO’ ]0) _%<Z7 jZKzzOO _'i’ ]0 _]) M(Z: ]) (97)
Thearray L(i, j) = Kpu(i, j) — M (3, 5) (9.8)

is shown for a few values of 7, in table 13.

TaBLE 13. THE ARRAY L(i, §)

%
S A

— \J -5 —4 -3 -2 -1 0 1 2 3 4 5

< i

> >~ 0 0.000000  0.000000  0.000000  0.000000  0.000000  0.577350  0.000000  0.000000  0.000000  0.000000  0.000000

O = 0.000000  0.000000  0.000000  0.000000 —0.288675  0.000000 —0.288675  0.000000  0.000000  0.000000  0.000000

e, =g 0.000000  0.000000  0.000000 —0.057283  0.000000  0.114565  0.000000 —0.057283  0.000000  0.000000  0.000000
= 3 0.000000  0.000000 —0.034755  0.012227  0.034755 —0.024454  0.034755  0.012227 —0.034755  0.000000  0.000000

HO 4 0.000000 —0.022800  0.004222  0.025471 —0.004222 —0.005344 —0.004222  0.025471  0.004222 —0.022800  0.000000

T O 5 | —0016021 0.000005 0.019545 —0.000268 —0.003525  0.000526 —0.003525 —0.000268  0.019545  0.000005 —0.016021

= uw

We may now solve equation (9.3), L u, = 7,, for u,. The resulting scheme is almost identical
to that for the scalar problem described in §5. The results obtained by this method are identical
to the results obtained in §8 except that u, is no longer computed. A great saving of computation
time results since we determine values of #, only on the crack and no longer need to sum over
points in the plane z = 0 which lie beyond the crack tips.
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10. REMARKS ON THE METHOD OF COMPUTATION

In this section I shall compare the methods used in this paper with the alternative of solving
(2.2) directly by a difference method in which values of , and u, are determined step by step in
time at a grid of points in the (x, z) plane. We shall assume, of course, that we want to find the
relative displacement across the crack and not, in the first instance, to find the radiation field away
from the crack.

Let the half-length of the crack be unity and assume we wish to compute the solution as far
as ¢ = T assuming again that the fastest wave speed is unity. Then in the usual finite difference
method we would need a grid of points in the (x,z) plane at least so large that no reflexions
come back from the edge of the grid to interfere with the motion of the crack. Let Nbe the number
of discretization steps per unit length in both the x and z directions. Then the number of grid
points will be proportional to N272.

On integrating the system of difference equations up to time 7" we would need a number of
computational operations proportional to

yN3T, (10.1)

where v is the ratio of the space step size to the time step size.

In solving the problem by our method outlined in §9 or the antiplane strain problem of §5
we need only N space steps but in computing the solutions up to ¢ = 7 we should use a number
of computational operations proportional to

yENAT®, (10.2)

To use our method of §8 where values of u, are determined on the plane z = 0 both on and

beyond the tips of the crack the number of computational steps required is proportional to

YANATY, (10.3)
For fixed y and N the number of computational steps required to solve for 7 units of time in-
creases most rapidly with 7T for our method of § 8 and least rapidly for our method of §9 where
grid points off the end of the crack were considered. The conventional method gives an inter-
mediate rate of increase.

It is interesting to consider the values of y which are required for stability. In the conventional
computation scheme with equal steps in the ¥ and z directions y must be less than 1/,/2. The
reason why we were able to take y = 1 in our difference scheme for the integral equation is
that round-off errors are introduced only on the region R and the whole system is heavily
damped by the radiation of energy away from R. A more thorough numerical analysis of our
scheme will not be pursued here.

We note that in three-dimensional problems the formula corresponding to (10.1), (10.2) and
(10.3) are respectively

yNTH, (10.1q)
yN2T?2, (10.24)
and vON®T®, (10.3a)

Thus in three dimensions our method of §9 has an even greater economy of computation
over the other methods.

Some remarks are in order here on our method of discretizing the kernel. This is relatively
time consuming since the number of operations required to compute the kernel to I time steps
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is proportional to I%. We were content to evaluate K of § 7 to forty time steps. This took about 3 min
on an IBM system 360 model 67. Once computed it was stored on tape for future use. Some saving
of computer time could probably have been achieved by combining our method of discretization
near the apex of the array with analytical formulae when available away from the apex. In
this work no attempt to minimize computer time has been made.

11. GEOPHYSICAL CONCLUSIONS

The solution shown in figures 16 and 17 represents, so far as a two-dimensional solution can,
a fairly realistic model of a seismic source. But some improvements may be made quite simply.

The continuation for larger times of this solution would show a decrease in the tangential
displacement to the static solution of (8.5). However, frictional forces are more likely to lock the
crack in the configuration of its maximum relative displacement.

It is also unlikely that any real earthquake would possess such a symmetric form. For instance
a plausible mechanism for triggering a shock would be creep at one end of the active fault. This
would give rise to a crack nucleated from one end, that is, a unilateral crack.

It is suggested that unilateral cracks and especially three-dimensional crack models should
be obtained by the method described in this paper and used to obtain a greater understanding
of the generation of seismic radiation by earthquakes.

This work was carried out while the author held a research fellowship of the U.K.A.E.A.
and a visiting research associateship at The Pennsylvania State University.

The author wishes to acknowledge his appreciation of the excellent computing facilities at
The Pennsylvania State University.
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